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Abstract
We characterize those Hilbert space operators which are first moments of the
gauge covariant positive operator-valued measures introduced by Lahti and
Pellonpää.

We consider the suitability of such measures for describing quantum phase,
observing that the gauge angle defining the measure is not always closely related
to the spectrum of the first moment operator. We take the position that the first
moment operator represents the quantal property the measure is (imperfectly)
describing. This is in contrast to the viewpoint that positive operator-valued
measures are the fundamental quantum observables.

PACS numbers: 0365, 0230, 0240

1. Introduction

In a recent paper, Lahti and Pelonpää [3] introduce a certain class of positive operator-valued
measures (POVMs). In this paper we shall identify and characterize the Hilbert space operators
which are the moments of these POVMs, and conversely. The physical meaning of these
measures is discussed in [3] and we provide a different point of view in the last part of this
paper. Because there is some disagreement about this interpretation, but not the mathematics
surrounding it, we shall use the mathematically neutral terminology gauge positive operator-
valued measures, or GPOVMs, which Lahti and Pelonpää termed gauge observables.

The setting of the theory is the Hilbert space L2(R) (associated with the (irreducible)
Schrödinger representation of the canonical commutation relations for one degree of freedom).
A distinguished orthonormal basis for this space is the set {hn : n � 0} of Hermite–Gauss
functions (also known as oscillator eigenfunctions), which is, at the same time, a Schauder
basis for the space S(R) of smooth functions which, together with all derivatives, vanish
at infinity faster than any polynomial, and a topological basis for its dual S ′(R). Critical
to the measures introduced by Lahti and Pelonpää [3, 4] is the strongly continuous unitary
group {Uθ : θ ∈ T} of gauge transformations, generated by the self-adjoint number operator
N = ∑

n�0 nPn, where Pn is the projection onto the one-dimensional subspace spanned by hn.
Here T is the multiplicative group of complex numbers of modulus 1—however, for simplicity
we shall adopt a real parametrization for T, and write T = [0, 2π), with the group action
being described as addition modulo 2π . We do not need to specify the domain of the number
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operator N , as S(R) is a core of self-adjointness for it, and all calculations can be performed
in that space. We shall, as usual, write N for its restriction there.

With these preliminaries introduced, we can give the definition of the class of POVMS
introduced by Lahti and Pelonpää.

Definition 1.1. By a gauge positive operator-valued measure, or GPOVM, is meant a positive
operator-valued measure E from the Borel subsets B(T) of T into the contraction operators
on L2(R), which is covariant under the gauge group:

UθE(V )U−1
θ = E(V + θ) V ∈ B(T) θ ∈ T. (1.1)

Note that the translation operation in B(T) also needs to be understood as being calculated
modulo 2π . The set of all GPOVMs on L2(R) will be written GM.

The main result of Lahti and Pelonpää is to characterize GPOVMs in terms of a particular
space of doubly indexed one-sided complex sequences, namely the space k of all such double
sequences (cmn)m,n�0 for which

cnn = 1 n � 0 (1.2)

and such that, for any k � 0, the (k + 1) × (k + 1) matrix

[cm,n]0�m,n�k (1.3a)

is positive definite.
This last condition can usefully be expressed in operator terms. For any m, n � 0 we can

define the operator Pmn on L2(R) by the formula

Pmnψ = 〈hn, ψ〉hm ψ ∈ L2(R). (1.3b)

Then condition (1.3a) can be expressed by requiring that the operators

k∑
m,n=0

cmn Pmn k � 0 (1.3c)

are all positive operators on L2(R).
Key to the formulation of Lahti and Pellonpää are the Fourier coefficients of the

(characteristic functions of the) Borel subsets of T. These are defined as follows: for every
Borel set V ∈ B(T), we write

Ṽk = 1

2π

∫
V

eikθ dθ k ∈ Z. (1.4)

Then the main result of Lahti and Pellonpää can be summarized as follows.

Proposition 1.2. For any c ∈ k the operator identity

κ(c)(V ) =
∞∑

m,n=0

cmnṼn−mPmn V ∈ B(T) (1.5)

converges to a positive operator on L2(R) for any V ∈ B(T), and this formula defines a
GPOVM κ(c) on L2(R). Moreover, the map κ : k → GM is a bijection, with inverse

κ−1(E)mn = lim
ε→0

2π

ε
〈hm,E([0, ε))hn〉. (1.6)

Note that the defining conditions (1.2) and (1.3a) for elements of k are sufficient to ensure the
summability of the series in (1.5).
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2. First moments

POVMs on R have first moments which are symmetric operators, and conversely (see [5]).
Since T is a bounded subset of R, the first moments of POVMs (and in particular GPOVMs)
on T have first moments which are bounded self-adjoint operators. Consequently, it should be
possible to recast the theory of GPOVMs entirely in terms of self-adjoint operators.

To observe this, we recall that the first moment AE of a POVM E on T is the bounded
self-adjoint operator

AE = 1

2π

∫ 2π

0
θ dE (θ). (2.7)

If E = κ(c) ∈ GM is a GPOVM derived from the sequence c ∈ k, it is clear that

〈hm,AEhn〉 = 1

2π
cmn

∫ 2π

0
θ ei(n−m)θ dθ

=



π m = n

1

i(n − m)
cmn m 
= n

(2.8)

from which we obtain the identity

cmn = δmn − i(m − n)〈hm,AEhn〉 m, n � 0. (2.9)

Thus it is clear that the first moment AE completely determines the sequence c ∈ k (and
hence the GPOVM E), and vice versa. This uniqueness result has been obtained by Lahti and
Pellonpää [4].

It is interesting to note a direct relationship between the GPOVM E and its first moment
AE other than the basic one indicated in (2.7). The following relationship reflects the gauge
invariance of the situation.

Proposition 2.1. If E is a GPOVM on L2(R) and AE is its first moment, then

U−1
θ AE Uθ + θ I = AE + 2πE[0, θ) (2.10)

for any 0 � θ < 2π .

Proof. Using elementary integration, it is clear that

〈hm,U
−1
θ AEUθhn〉 = 〈Uθhm,AEUθhn〉

= ei(n−m)θ 〈hm,AEhn〉
= 1

2π
cmn ei(n−m)θ

∫ 2π

0
β ei(n−m)β dβ

= 1

2π
cmn

∫ 2π

0
β ei(n−m)(θ+β) dβ

= 〈hm,AEhn〉 − θδmn + 2π〈hm,E[0, θ)hn〉
for any m, n � 0, as required. �

Since the first moment AE of a GPOVM E determines that GPOVM completely, it is
evident that there should be a characterization of those bounded self-adjoint operators on
L2(R) which are the first moments of GPOVMs. It is instructive to provide this. Comparison
of the positivity condition (1.3a) for the defining sequence (cmn)m,n�0 of a GPOVM and the
relationship (2.9) between that sequence and the matrix coefficients of the first moment shows
that the first moment operator AE for a GPOVM satisfies the inequality

i[〈Nf,AEf 〉 − 〈f,AENf 〉] � ‖f ‖2 f ∈ S(R) (2.11)

and we can use this observation to arrive at the following result.
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Proposition 2.2. If A is a bounded self-adjoint operator on L2(R), then there exists a GPOVM
E on L2(R) and a bounded (measurable) real-valued function G on N ∪ {0} such that

A = AE + G(N) (2.12a)

if and only if A satisfies the inequality

i[〈Nf,Af 〉 − 〈f,ANf 〉] � ‖f ‖2 f ∈ S(R). (2.12b)

In addition to this, G = 0, and so A = AE , if and only if 〈hn,Ahn〉 = π for all n ∈ N ∪ {0}.

Proof. Firstly, it is clear from the above discussion that the first moment AE of a GPOVM
satisfies equation (2.12b). Moreover, since the commutator of any function G(N) of the
number operator N with itself vanishes, any bounded self-adjoint operator A on L2(R) of the
form indicated in equation (2.12a) also satisfies equation (2.12b).

Conversely, suppose that A is a bounded self-adjoint operator on L2(R) which satisfies
equation (2.12a). Then it is clear that defining a double sequence (cmn)m,n�0 by the formula

cmn = δmn − i(m − n)〈hm,Ahn〉 m, n � 0

yields an element c ∈ k, which can be used to define a GPOVM E = κ(c). It is then clear from
equation (2.9) that the off-diagonal matrix coefficients for A and AE coincide, and hence that
A − AE is a diagonal operator on L2(R) (with respect to the Hermite–Gauss functions), and
hence is of the form G(N) for some bounded (measurable) real-valued function G on N∪ {0}.
This completes the proof. �

It is worth noting that the relationship between the GPOVM E and its first moment AE

indicated by equation (2.10) is complete in that it permits us to reconstruct E solely from its
first moment. To be specific, suppose that A is a bounded self-adjoint operator on L2(R) which
satisfies equation (2.12b). Equation (2.10) indicates that we should consider the operators

E(θ) = 1

2π
[U−1

θ AUθ − A + θI ] θ ∈ [0, 2π ].

The positivity condition (2.12b) can be used to show that any such operator E(θ) is positive,
and moreover that the map E from [0, 2π ] to the positive bounded operators on L2(R) is
increasing, with E(0) = 0 and E(2π) = I . Standard measure-theoretic gymnastics enable us
to reconstruct a POVM E on L2(R) such that E(θ) = E[0, θ) for any θ ∈ T, and the nature of
equation (2.10) ensures that the POVM constructed by this process is indeed gauge covariant.
Thus the POVM E so obtained is a GPOVM, and its first moment AE and the original operator
A are related by equation (2.12a).

3. Consequences

Were we to play fast and loose3 with our notation, we might observe that equation (2.12b)
could be written in the operator form

i[N,A] � I. (3.13)

It is well known in quantum optics that there are no self-adjoint operators which satisfy the
identity i[N,A] = I in any sense (weak or otherwise) on a domain in L2(R) which includes
the linear span of the Hermite–Gauss functions (the no–go theorem [2]). There are, however,
many self-adjoint bounded operators which satisfy this weaker inequality (3.13). Since any

3 To be able to work with this inequality rigorously, we need to know whether A maps S(R) into the domain of N—a
question we choose not to address. However, the inequality is suggestive, and a convenient shorthand.
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function of N can be added to A without affecting this inequality, there is no problem in
finding bounded self-adjoint operators on L2(R) which satisfy this inequality, together with
the condition

〈hn,Ahn〉 = π n � 0

and hence which are first moments of elements of GM. A number of examples are given by
Lahti and Pellonpää [3, 4], and we want to use one such example to show that, starting from
E and forming AE , the spectral decomposition of AE can be rather different in character from
what E would have one suspect.

Consider the simple example of the element of GM given in terms of a pair of distinct
non-negative integers s, t and a complex number z of modulus less than or equal to unity,
obtained by setting cst = z, cts = z, with all other off-diagonal elements being zero. This
leads to the formula

E(V ) = 1

2π

∫
V

dβ +
z

2π

∫
V

ei(t−s)β dβ Pst +
z

2π

∫
V

ei(s−t)β dβ Pts

for any V ∈ B(T). The associated first moment observable AE can be read off from this:

AE = πI +
z

i(t − s)
Pst +

z

i(s − t)
Pts

and this self-adjoint operator is particularly simple to analyse. Its spectrum consists of the
three eigenvalues

π +
|z|

t − s
, π − |z|

t − s
, π

the first two of which are nondegenerate, with associated eigenvectors

hs + ie−iϕht , hs − ie−iϕht

where z = |z|eiϕ . Thus the three eigenvalues have the associated spectral projections

P+ = 1
2 [Pss + Ptt + i(e−iϕPts − eiϕPst )]

P− = 1
2 [Pss + Ptt − i(e−iϕPts − eiϕPst )]

Pπ = I − Pss − Ptt

so that while we have

AE = πPπ +

(
π +

|z|
t − s

)
P+ +

(
π − |z|

t − s

)
P−

we see that, in general, E(V ) is not a linear combination of P+, P− and Pπ , and certainly E(V )

is not the spectral projection for V associated with AE , which is simply the sum of as many of
the above three projections whose associated eigenvalues belong to V .

The standard interpretation of quantum theory now tells us that AE is an observable (in
the sense of Dirac and von Neumann), independent of the means by which we obtained it.
Because of its simple spectrum, it is possible (in principle) to arrange a measurement of it
which would result in the precise measurement of its eigenvalues. This requires no more than
an arrangement capable of distinguishing amongst the three eigenvalues of AE . Subject to the
eigenvalue obtained (registered), such an apparatus prepares the corresponding eigenstate.

This statement does not refer to E, and is arrangement independent, subject to the
resolution condition. But as AE is the first moment of E, and as E represents a measurement
arrangement, we must connect the two in this regard.

A POVM, generally, represents an experimental arrangement which, for a given state,
results in values for the expectations of the E(V ) for all Borel sets V (in the domain of
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definition of E). By piecing these positive numbers together to form the first moment, AE

will result. How effectively this can be done depends, firstly, on how accurately E is being
measured. This is not a trivial observation, since the spectrum of E is continuous, and so
subject to at least some minimum limitations in its measurement. Secondly, there will be an
error in using this data to compute the first moment. However, in the usual spirit of physics,
we may consider AE as an idealized limit, rather than a directly measured quantity.

(The curious phenomenon of a POVM with a continuous spectrum (here [0, 2π)) with a
first moment with a discrete spectrum (here three eigenvalues) is not new.)

But there is a third point to consider, for there are output states associated with the
measurements of the E(V ), and these are not the same as the eigenstates of AE . It does
not seem sensible to prepare an AE eigenstate by an E-arrangement.

An interesting point to consider is that if we were faced with AE in its eigendecomposition
form, there would be no angle to consider. Only by looking amongst the POVMs which have it
as their first moment would E and its angle appear. So while E is a perfectly good observable
measure with gauge angle covariance, it has a first moment which does not. Even if you
believe in considering POVMs as the primary notion of observable in quantum mechanics,
the old notion of observable must still remain (since {P−, P+, Pπ } is a special sort of POVM),
and so AE must be considered as part of the quantal information. But then it has to be asked:
what is the significance of the covariance angle when its first moment has no such covariance?
Physically, how is the physical content encoded in AE related to the covariance angle? Could
we ascribe a phase to AE? If so, if there were another GPOVM whose first moment was AE

(such a thing is possible), how would the phases be related physically?
One class of answer might be the one indicated above: considering that POVMs should

be the primary notion of observable in quantum mechanics. This follows the tradition begun
by von Neumann and Birkhoff, although they considered the rather more restricted structure
of the lattice of projection operators as propositions, or questions. Then the fact that AE is so
different in character from E might not be anything to worry about, and the fact that a covariant
POVM like E and a non-covariant POVM like {P−, P+, Pπ } have the same first moment is of
no consequence. This is not our belief.

For these reasons, the authors are very chary about using the term phase observable for
GPOVMs, though certainly not everyone agrees with us. The mathematics of GPOVMs found
in this paper, and in [3], is clear, and, as long as the terms phase and observable are used in
a precisely mathematically defined way, there can be no objections. We must all be wary of
confusing the name with the thing. We have included a very few references discussing POVMs
and quantum mechanics, [6–12].

Our reluctance to identify GPOVMs as phase observables is increased by the following
example of an operator which, we believe, has a strong case to be considered as a phase
observable, and yet which has no GPOVM decomposition. The operator in question is the
Weyl quantization, ∆[ϕ], of the angle function in phase space, [1,2]. In view of its construction,
it necessarily has a phase space angle as its classical limit. But what classical limit? We have
shown in [13] that it is the phase of the light in the coherent phase in the modified Dick laser
model, and in this model the macroscopic description of light is classical. (We note that none
of the other candidate phase operators that we know of has this property. They are all functions
of both the phase and intensity of the light in this model, though, interestingly, they converge
to the phase as the intensity approaches infinity.) This phenomena is a sort of reverse to that
exhibited by E and AE .

To prove this assertion we need results concerning the commutator of ∆[ϕ] and the number
operatorN . This cannot be defined as a simple operator, but can be represented as a sesquilinear
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form τN,∆[ϕ] on S(R). Details may be found in [1, 2]. The result turns out to be that

i[〈Nf,∆[ϕ]f 〉 − 〈f,∆[ϕ]Nf 〉] = iτN,∆[ϕ][f, f ]

= ‖f ‖2 + 1
2 ([Uf ′](f ) − [Uf ](f

′
)) (3.14a)

for any f ∈ S(R), where U ∈ L(S(R),S ′(R)) is defined by the formula

[Ug](f ) = lim
L→∞

∫
R

gI (L)(x)f (x)g(−x) dx (3.14b)

for f, g ∈ S(R), gI (L) being the cut-off factor

gI (L) =
{
x−1 L−1 < |x| < L

0 otherwise.
(3.14c)

Direct calculation, with f (x) = e− 1
2 x

2
yields

[Uf ′](f ) = −[Uf ](f
′
) =

∫
R

e−x2
dx = √

π

so that

i[〈Nf,∆[ϕ]f 〉 − 〈f,∆[ϕ]Nf 〉] > ‖f ‖2

in this case. Thus ∆[ϕ] is not the first moment of a GPOVM.
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